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Abstract

Scene flow methods estimate the three-dimensional motion field for points in the world,
using multi-camera video data. Such methods combine multi-view reconstruction with mo-
tion estimation. This paper describes an alternative formulation for dense scene flow es-
timation that provides reliable results using only two cameras by fusing stereo and opti-
cal flow estimation into a single coherent framework. Internally, the proposed algorithm
generates probability distributions for optical flow and disparity. Taking into account the
uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene
flow than previous methods allow. To handle the aperture problems inherent in the estima-
tion of optical flow and disparity, a multi-scale method along with a novel region-based
technique is used within a regularized solution. This combined approach both preserves
discontinuities and prevents over-regularization – two problems commonly associated with
the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate
the strength of the proposed approach.
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1 Introduction

There is increasing interest in methods that can estimate the motion of a 3D scene
given video streams obtained via a multi-camera rig. The resulting estimates of
3D scene flow can be used in a wide variety of applications including robotics,
autonomous navigation, automated model reconstruction and reverse engineering,
human motion and gesture analysis, virtual reality and movie special effects, video
compression and retrieval, etc.
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While the demonstrated applications of non-rigid 3D scene flow estimation are
impressive, some aspects of the 3D motion estimation problem remain open. In
particular, since the estimation of 3D motion relies on the information available
from 2D image data, the estimation of 3D motion is generally susceptible to image
noise. In order to obtain a reliable estimate of 3D motion, usually a large number of
cameras are used in the stereo rig. There are also problems with estimation errors
that arise in the regions of low contrast variation, or in areas of the surface which
are visible to only a subset of the cameras. Ideally, one would prefer an estimation
algorithm that can handle these problems in a principled way.

One of the main contributions of the paper is a method that can quantify and account
for errors in non-rigid 3D scene flow estimates that arise due to image measurement
errors. This is in direct contrast with past scene flow methods [51, 59, 60]; image
measurement errors propagate through the 2D optical flow and disparity estimates,
and ignoring this can lead to poor 3D scene flow estimates. Our method explicitly
models the uncertainty of 2D optical flow and disparity estimation, and then sys-
tematically accounts for this uncertainty information in the estimation of 3D scene
flow. Our experiments on data with known ground truth show that by incorporat-
ing the 2D uncertainties, the angular and the magnitude errors of the estimated 3D
scene flow are at least one standard deviation smaller than those obtained with [51].

Another main contribution of the paper is a unified region-based, multi-scale al-
gorithm for the estimation of optical flow and disparity. Compared to [43], the
proposed multi-scale, region-based algorithm preserves the discontinuities, while
at the same time, the optical flow and disparity within the same region are regu-
larized through a parametric model fitting process. In contrast with [6], our region
model fitting process makes direct use of the 2D uncertainty information and does
not require setting parameters for a robust error norm. Moreover, our algorithm
is capable of filling in the estimates of optical flow and disparity for regions that
are only visible in one image by making use of adjacent regions that have valid
estimates of optical flow and disparity. Using our formulation, we demonstrate im-
proved accuracy of optical flow and disparity using standard data sets [49, 50].

In this paper, we focus on the challenging case of estimating dense 3D scene flow
given only the minimal setup of two cameras in the stereo rig. Past approaches tend
to require more cameras to gain a reasonable estimate of 3D scene flow; for in-
stance, [51] reported experimental results in a rig of 51 cameras. In experiments,
our algorithm outperforms [51] in the two-camera setup and produces qualitatively
similar results as those of [59, 60] where three cameras are needed. We observe that
it becomes possible to perform well in the challenging two-camera case if covari-
ances in 2D flow and disparity estimation are explicitly propagated, and disconti-
nuities are adequately modeled in a multi-scale, region-based framework. Finally, it
should be emphasized that our algorithm can be used with a rig that includes more
than two cameras without any modifications.
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Fig. 1. Overview

The overview of the computational steps involved in estimating multi-scale 3D
scene flow and its error covariance is shown in Fig. 1. The cameras are calibrated.
The captured image streams are synchronized and rectified. At each image pyramid
level, first we compute the distributions of optical flow and disparity, then we make
use of regions from image segmentation to regularize the 2D displacements (i.e.,
optical flow and disparity). Details of the region-based approach are described in
Sections 3.1 and 3.2. The estimates of the 2D displacements and their associated
error covariance are then used in a weighted least squares formulation to estimate
3D scene flow at this level. The 2D displacements and 3D scene flow are then
propagated to the next pyramid level. The final estimates are obtained at the lowest
pyramid level. The combined algorithm is described in Section 3.3. The integrated
approach allows a principled way to propagate 2D information to 3D within a multi-
scale framework.
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2 Related Work

We broadly classify the related work into two categories. The first category includes
methods for 3D motion estimation where the 3D point correspondence is explicitly
recovered over time. The second category includes methods dynamic depth map
estimation where there is no notion of 3D point correspondence.

2.1 3D Motion Estimation

There has been a fairly large amount of research done in the area of 3D motion
estimation. We group the related work into four categories based on the setup and
assumptions made.

2.1.1 Rigid Motion, Monocular Sequence

Structure-from-motion techniques [10, 47, 61] recover relative motion together
with scene structure from a monocular image sequence. The scene is generally
assumed to be rigid [47] or piecewise rigid [10, 61]; thus, only a restricted form of
non-rigid motion can be analyzed via these techniques [3].

2.1.2 Non-rigid Motion, Monocular Sequence

By making use of a priori knowledge, or by directly modeling assumptions about
the scene, techniques like [15, 31, 35, 46, 48, 56] can estimate non-rigid motion
from a monocular image sequence.

In [31, 35], a deformable model is used and the 3D motion is recovered by estimat-
ing the parameters to deform a predefined model.

The older work of [48] assumes that the motion minimizes the deviation from rigid
body motion. Recently, more researchers have discovered that in practice, many
non-rigid objects deform with certain structure. Their shapes can be regarded as a
rigid component plus a weighted combination of certain shape bases. In [15], the
shape bases are first obtained by applying Principal Component Analysis on the
shape points of a sparse mesh tracked by a stereo tracking algorithm; then this set
of shape bases is used for online model-based monocular facial tracking. In [46],
an Expectation-Maximization (EM) method is proposed to simultaneously estimate
3D shape and motion for each time frame. This method learns the parameters of a
Gaussian, and robustly fills-in missing data points under the orthographic projec-
tion model. In [56], a set of constraints is proposed to eliminate the ambiguity when
determining the shape bases. This method can provide a closed-form solution un-
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der the weak-perspective projection model. Both [46, 56] are batch methods since
tracked feature points from multiple video frames are required. In all three methods
[15, 46, 56], only sparse 3D motion can be recovered. Furthermore, the assumption
of a linear combination of shape bases may be insufficient to capture more complex
and subtle shape variations.

2.1.3 Motion Stereo

With multiple cameras, stereo and 2D motion information can be combined to re-
cover the 3D motion, e.g., [25, 30, 41, 53, 57, 62]. Except for [25] and [30], nearly
all techniques in this category assume rigidity of the scene and/or rigidity of the
motion. For non-rigid tracking, [25] uses relaxation-based algorithms and [30] gen-
eralizes the deformable model-based approach of [31]. The first approach cannot
provide dense 3D motion while the latter approach needs a priori knowledge of the
scene, i.e., the deformable model for the object to be tracked.

2.1.4 Non-rigid Motion, Multi-view

In an approach closely related to ours, Vedula, et al., [51] introduce the concept
of dense scene flow as the 3D counterpart of optical flow. They present a linear
algorithm to compute scene flow from the optical flow fields of the video streams
from multiple cameras. Given scene flow and initial 3D scene structure, dynamic
scene structure can be recovered. Zhang et al., [59] reformulate the scene flow
estimation problem in terms of energy minimization; scene flow is computed by
fitting an affine motion model to image blocks with global smoothness constraints.
This algorithm is further improved in [60] so that discontinuities are preserved and
occlusions are handled. However, in [60], the depth information in the occluded
area is simply ignored although it has been computed; the 3D scene flow in this
case is simply estimated from the multiple view optical flow constraints. In [36],
Pons, et.al., avoid the explicit computation of optical flow. They back-project the
images onto the instantaneous 3D surface of the scene, and the depth recovery and
3D scene flow are modeled within an energy minimization framework. The costs
used in the energy minimization are global and local statistical measures on the
back-projected images. Occlusions are not handled in this approach. As is the case
with other energy minimization approaches in this category [59, 60], some weights
on the regularization terms must be determined beforehand [36].

2.2 Dynamic Depth Map

Approaches like [11, 58, 45] recover a dynamic depth map over time by making use
of motion constraints, but do not output 3D scene flow. In [45], the scene is assumed
to be piecewise planar. Motion constraints are used to predict the depth map of the
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planar patch in the next time step. Patches are merged together through a greedy
hypothesis testing algorithm that minimizes an image matching cost. Two other
approaches in this category [11, 58] recover shape from dynamic scenes by finding
correspondence in a 3D space time window. Both approaches are batch methods
as multiple frames are needed for constructing the space time window; hence these
techniques are not suitable for online algorithms. Furthermore, [11, 58] require
active illumination to improve the accuracy in correspondence matching. All three
systems only output dynamic depth maps; there is no point-to-point correspondence
computed over time, hence there is no 3D scene flow being computed.

Our proposed method aims to compute dense 3D scene flow fields in a multiple
camera setup by combining simultaneous 2D optical flow with stereo-depth infor-
mation. No assumption of the scene or 3D motion is made. In particular, instead
of trying to avoid or eliminate the uncertainty in the computation of 3D scene
flow, we model, incorporate and propagate the uncertainty information in a prin-
cipled and consistent way when we solve for the 3D scene flow. The first benefit
of incorporating the uncertainty information is that we improve the accuracy of
Vedula’s [51] method. Another benefit of propagating the uncertainty information
is that the propagated 3D uncertainty information is useful for applications like 3D
tracking and 3D motion analysis. The proposed algorithm also marries a global
method and a segmentation based local method in a multi-scale framework to pre-
serve discontinuities and to fill in information when the areas of images are of low
texture. Occlusions are also handled through the region merging process, where
occluded regions may take on valid estimates from one of the adjacent regions. In
experiments with synthetic data, we show that by incorporating the covariance in-
formation from optical flow and disparity, the estimation errors measured in terms
of angle and magnitude of the estimated 3D scene flow are at least one standard
deviation smaller than those obtained via [51]. In experiments with real data, the
results we obtain with a two-camera setup are comparable to the results presented
in [60] where three cameras are used.

3 Approach

Both optical flow and disparity estimation can be formulated as problems of find-
ing corresponding points in two images. While optical flow estimation finds such
correspondences in images taken at different times, disparity finds them in images
captured by cameras in different views. Surveys of related techniques in [5, 39]
show that although researchers have worked to estimate optical flow and disparity
separately in the past, the techniques used to solve these two problems are simi-
lar. These techniques can be generally categorized as: phase-based, energy-based,
feature-based and area-based methods. Phase-based methods [13, 21, 24, 54, 55]
make use of Fourier phase information. Energy-based methods [1, 2, 19, 20, 28,
33, 34, 37, 40, 43] minimize a cost function plus a regularization term in a vari-
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ational framework to solve for the 2D displacements (optical flow and disparity).
Feature-based methods [4, 7, 16] match features (e.g. points, edges, curves, etc.)
in two images. Area based methods [12, 14, 22, 23, 27] find optical flow/disparity
by correlating image patches across images, e.g. correlation, mutual information,
etc. Thus, closely-related methods have been developed for both optical flow and
disparity computation.

To handle the discontinuities when estimating flow and disparity, there are methods
that make use of color image segmentation, or a combination of flow/disparity and
color, and local region model fitting when computing optical flow [6, 18, 32, 63]
and stereo [45, 64]. None of these methods make use of uncertainty information for
the flow/stereo estimates.

In this section, we first give a general formulation of the optical flow and dispar-
ity problem, followed by the description of a previous global approach by [43]
that puts the optical flow estimation problem in a maximum a posterior (MAP)
framework. The global approach suffers from over-regularization, especially in a
multi-scale approach due to coarse-to-fine information propagation. To overcome
this problem, we introduce a local motion model fitting method that makes use of
image segmentation. The model fitting process involves the use of a weighted least
squares method. Hence the output from the motion fitting process is just the linear
transformation of the MAP estimates from [43]. The region-based approach is then
generalized to address the problem of disparity estimation.

Let I(x, y, α) be the function of pixel position and time/view for the image signal
(α = t for time, α = c for camera view). Let v be the 2D pixel displacement caused
by change in time or camera view. Commonly, the goal is to find v such that

∇I · v + Iα = 0. (1)

In the following derivations, we use I to represent I(x, y, α) for simplicity. ∇I
represents the 2D spatial gradient vector of the image and Iα represents the change
in image caused either by time or view. The same equation has been used both
in the context of optical flow [20] and stereo vision [29]. This problem is under-
constrained as we are given a single linear equation for solving two unknowns
(|v| = 2). To get around this, some form of regularization is usually employed. The
common formulation is to minimize:

E(v) =
∑
i∈Ω

(∇Ii · v + Iiα)2, (2)

where i is the index of the pixel in a predefined neighborhood Ω. Minimizing
Eq. 2 enforces smoothness of 2D pixel displacements in the neighborhood Ω. This
smoothness constraint is often violated when there is a large displacement of the
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pixels in the neighborhood Ω between the two images captured. To alleviate this
problem, multi-resolution based approaches are widely adopted.

Simoncelli et al. proposed an approach that computes distributions of optical flow
[43]. This approach computes the covariance of the flow estimates at each pixel
based on the contrast properties over a local neighborhood at multiple scales. In
this paper, we adapt this approach in an improved formulation. Variance estimates
from [42] can provide us with the knowledge of the error in the coarser scale es-
timates so that we can make corrections during the estimation at finer scales. Our
proposed approach takes care of the over-smoothing problem of [43] and still pre-
serves the useful property of producing an estimate of the flow distribution at each
pixel. Our approach is extended to estimate disparity distributions in stereo. Given
the distributions of optical flow and disparity, we compute 3D scene flow via an
integrated algorithm using weighted least squares, as described in Section 3.3. As
will be seen in the experiments, utilizing flow and disparity distribution informa-
tion in our formulation to 3D scene flow estimation yields superior results to [51]
in the case of just two cameras. Compared to another region-based approach [60],
the proposed algorithm is simple, has fewer system parameters to set, and yields
good estimation results in the experiments.

3.1 Distributions of Optical Flow

Following [43], the uncertainty in optical flow computation is described through
the use of a Gaussian noise model,

∇I · (v − n1) + It = n2. (3)

The image intensity signal is represented as a function I of position (denoted
by image coordinates x and y) and time (denoted by t). The image gradient is
∇I = (Ix(x, y, t), Iy(x, y, t))T and the temporal derivative of the image is It. The
first random variable n1 ∼ N (0,Λ1), describes the error resulting from the fail-
ure of the planarity assumption (i.e., v is constant in a small region). The second
random variable, n2 ∼ N (0, Λ2) describes the errors in the temporal derivative
measurements.

Based on the constant brightness assumption and from Eq. 3, a MAP estimate of v
can be derived. Let Λp be the prior distribution of v, each optical flow vector (per
pixel) is considered as a normal distribution with mean flow v̂ and covariance Λv:

Λv =

[∑
i∈Ω

giMi

σ2
1‖∇I(xi, yi, t)‖2 + σ2

2

+ Λ−1
p

]−1

, (4)
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v̂ = −Λv · ∑
i

gibi

σ2
1‖∇I(xi, yi, t)‖2 + σ2

2

, (5)

where

M = ∇I∇IT =


 I2

x IxIy

IxIy I2
y


 , b =


 IxIt

IyIt


 ,

and gi is the weight assigned to the neighboring pixel i, σ2
1I = Λ1 (I is the identity

matrix) and σ2
2 = Λ2. In practice, the neighborhood Ω often refers to a m by m

window and a 2D Gaussian filter g of the same size is applied to get the weighted
sums in Eq. 4 and Eq. 5 [43]. The inclusion of Λp makes Eq. 4 well-conditioned.

3.1.1 Coarse-to-Fine Estimation of Flow Distribution

The constant brightness assumption made in deriving Eq. 4 and 5 is often violated
when relatively large motion (typically ≥ 2 pixels) occurs, to alleviate this prob-
lem and to propagate the uncertainty information at coarser scale levels (lower-
resolution images) to finer scale levels (higher-resolution images), Simoncelli de-
veloped a filter-based coarse-to-fine algorithm [42]. Instead of the traditional ap-
plication of Kalman filtering to propagate information over time, [42] propagates
information across different scales. We only describe the basic solution here.

First, we define a state evolution equation for the estimated flow field v̂,

v̂l = El−1v̂l−1 + n0, n0 ∼ N (0,Λ0), (6)

where l is an index for scale such that larger values of l correspond to higher res-
olution level in the image pyramid. E is a linear interpolation operator used to
extend the coarse scale flow fields to the finer scale flow fields, which is analogous
to the state evolution matrix in the standard Kalman filtering framework. The ran-
dom variable n0 represents the uncertainty of the prediction of the finer-scale flow
fields from the coarser-scale flow fields; it is assumed to be point-wise independent,
zero-mean and normally-distributed.

The measurement equation is defined based on Eq. 3:

−I l
t = ∇I l · vl + (n2 + ∇I l · n1). (7)

Applying the standard Kalman filter framework (replacing the traditional Kalman
filter time index t with scale index l), given Eq. 6 and Eq. 7, an optimal estimator
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for vl is derived from the estimate of the coarse scale v̂l−1 and a set of fine scale
derivative measurements:

Λ′l =El−1Λl−1
v (El−1)T + Λ0 ,

K l =
Λ′l∇I l

(∇I l)T [Λ′l + Λ1]∇I l + Λ2

,

νl =−I l
t − (∇I l)TEl−1v̂l−1 ,

v̂l =El−1v̂l−1 + K lνl ,

Λl
v =Λ′l − K l(∇I l)TΛ′l . (8)

In the above equations, K l is the Kalman gain and νl is the process innovation
which is approximated as the temporal derivative of the warped images. The Kalman
filter is directly related to recursive weighted least squares [44]. In our case, it is
used to propagate covariance information from the previous spatial scale to the cur-
rent spatial scale. A justification for this approximation and more details can be
found in [42].

3.1.2 Region-based Parametric Model Fitting

Simoncelli’s approach [43] tends to over-smooth the solution due to: (1) uniform
window size for defining a neighborhood, and (2) level to level propagation of
information.

One solution to the problem of uniform window size is to use window sizes that are
adaptive to local image properties. Given that information propagation is actually
the desirable property of a multi-scale approach, it is hard to address the over-
smoothing problem caused by level-to-level information propagation. To solve this
problem, we take inspiration from [6] by making use of a parametric model to fit
flow within the regions obtained from image segmentation. In the motion estima-
tion literature [6, 52], it is commonly assumed that motion of the pixels within
the same region can be fitted to a parametric model. Following the conventions in
[6, 52], we give a brief description of the motion model fitting process.

For each pixel, denoted by its coordinates, xi = (xi, yi), within the same region,
one of the following models is selected by the algorithm to fit flow vectors:

F(xi) =


 1 0

0 1


 , a = [a0 a3]

T ,

F(xi) =


 1 xi yi 0 0 0

0 0 0 1 xi yi


 , a = [a0 a1 a2 a3 a4 a5]

T ,
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F(xi) =


 1 xi yi x2

i xiyi 0 0 0

0 0 0 xiyi y2
i 1 xi yi


 , a = [a0 a1 a2 a6 a7 a3 a4 a5]

T .

The two-parameter model corresponds to translation, the six-parameter model cor-
responds to affine motion, and the eight-parameter model corresponds to quadratic
motion. The specifications of these models follow the convention of [6, 52].

Minimizing the following weighted least squares equation yields an estimate of the
model parameters ar for region r,

âr = arg min
ar

r∑
i

(v − F(xi)ar)
T Λ−1

v (v − F(xi)ar). (9)

Though this formulation is similar in spirit to that of [6], the robust error norm
is not used as we have an uncertainty model for v from Eq. 4 and Eq. 5, which
explicitly models the local image intensity information. Pixels in the region with
reliable estimates of v naturally carry more weight in the fitting process. These
pixels correspond to edge pixels or the regions with rich texture. Hence the fitting
tends to be more robust. In this combined approach, the cost function of Eq. 9 is still
convex and guaranteed to have an optimal solution given enough pixels within the
region. Let â be the optimal solution, the updated flow field v̂′ and corresponding
covariance Λ′

v are computed as follows:

v̂′ =F(xi)â,

Λa = (J(xi)
T Λ−1

v J(xi))
−1,

Λ′
v =F(xi)ΛaF(xi)

T , (10)

where J(xi) is the Jacobian of F(xi) evaluated at xi.

In the combined approach, first, image segmentation based on color/intensity infor-
mation is performed at each resolution level of the image pyramid. In our imple-
mentation, segmentation is obtained via mean shift [9]. The order of the parametric
model used for fitting follows the same set of rules as defined in [6]. Hence, the
order of the parametric model is adaptive to the resolution level, region size and
fitting residual error. A lower-order model is always preferred if a higher-order
model fails to reduce the error residual. When the residual error of fitting an eight-
parameter model is still high and the region size is large, the region is split by using
mean shift [9] on the region flow field as color/intensity information alone is not
enough. Model fitting is then performed on the newly split regions. This step can
be recursive; the stopping criteria is either the region is small enough or the error
residual is below a specified threshold. Figure 3.1.2 shows the process of com-
puting optical flow and the resulting flow field on the Yosemite sequence [17]. In
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input image (t) input image (t + 1)

image pyramid segmentation pyramid

resulting flow

Fig. 2. Example of flow computation for Yosemite sequence [17].

Table 1, the angular error indicates that by using the combined approach, we are
able to reduce the angular error in terms of mean and standard deviation compared
to [6, 42]. Our method produced error close to the state of the art method [34], but it
is pointed out later in [8] that the ground truth delivered with the Yosemite sequence
has problems, making it difficult to assess the significance of slight difference of
error reported for this sequence. Thus we consider the performance respectable,
while also suitable for use in our unified framework for disparity and 3D scene
flow estimation.
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Method Average Angular Error (AAE) Standard Deviation of AAE

Simoncelli, et al. [42] 3.81◦ 7.09◦

Black-Jepson [6] 2.29◦ 2.25◦

Our Method 1.17◦ 2.08◦

Brox,et al. [34] 0.99◦ 1.12◦

Table 1
Evaluation results of the proposed approach on the Yosemite sequence. Flow computed at
the cloudy sky area is not used for error computation.

3.2 Distributions of Disparity

Similar region model fitting algorithms [26, 45] have also been used for depth map
computation so that sharp boundaries can be preserved. Hence with slight modifi-
cation, the same integrated algorithm for optical flow computation can be used to
compute disparity for input image pairs captured by a stereo rig. To do this, we
just substitute the time index t and t + 1 with the view index L and R, where L

refers to left view and R refers to the right view in a binocular stereo rig. Only
horizontal displacement and corresponding variances are computed. Hence the es-
timation of disparity can be solved in the same way as optical flow. By using the
method to estimate optical flow and disparity, we are able to combine them to-
gether in a consistent way for 3D scene flow estimation. Fig. 3 shows the pro-
cess of computing disparity for the standard Teddy data set [50]. We have tested
the performance of our algorithm using the evaluation tool and data set provided
at http://www.middlebury.edu/stereo, our algorithm on average ranks
among the top ten on the data set provided as shown in Table 2.

One of the evaluation parameters provided by the online evaluation system [50]
is “E.T.”, which stands for error threshold. It is the acceptable disparity error. If
E.T. = 1, then the estimated disparity is considered correct if the difference be-
tween the ground truth disparity and the estimated disparity is within 1 pixel, oth-
erwise, it is considered wrong. The evaluation system allows us to adjust the value
from 0.5 − 2.0 pixels. As shown in Table 2, our method ranks higher when the
acceptable disparity threshold is larger. We believe this is due to the smoothing ef-
fect of the derivative filters used in our 2D displacement computation. The results
obtained by our method on all four data sets are shown in Fig. 4.

A single consistent algorithm for computing optical flow and disparity is summa-
rized in Algorithm 1. We use v in Algorithm 1 to represent optical flow and dispar-
ity as they are both 2D pixel displacements between two images I1 and I2.

The proposed unified algorithm presented in Alg. 1 is a two-stage algorithm. In the
first stage, as with [42], the estimation of 2D displacements exploits the constant
brightness assumption. Hence the proposed algorithm may have problems when
estimating 2D correspondences for objects in the scene that have non-Lambertian
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left image right image

image pyramid segmentation pyramid

resulting disparity

Fig. 3. Example of disparity computation for Teddy data set [50].

surface reflectance properties, or in the case of large baseline stereo. The second
stage region model fitting process used in our algorithm helps to alleviate the large
baseline problem. In experiments with real video data captured with relatively large
baseline stereo cameras (the observed largest displacement is around 100 pixels
between a stereo pair), the proposed algorithm is still able to produce reasonable
estimates due to the region merging step where the information fill-in takes place.

In our experience, our algorithm gives a good estimate of optical flow and dispar-
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E.T. A.R. Tsukuba Venus Teddy Cones

nocc all disc nocc all disc nocc all disc nocc all disc

0.5 10.3 21.5 22.5 23.7 5.81 6.12 9.73 16.6 21.7 33.7 11.3 17.5 18.8

0.75 9.4 21.0 21.9 21.3 0.45 0.68 3.11 10.2 14.9 24.3 5.79 12.0 12.7

1.0 7.8 1.64 2.65 8.75 0.13 0.30 1.86 7.59 11.7 19.3 4.74 10.7 10.8

1.50 5.8 1.02 1.83 5.40 0.13 0.30 1.83 4.48 7.12 13.3 3.76 9.21 9.25

2.0 5.4 0.69 1.40 3.74 0.12 0.27 1.72 3.15 4.91 10.0 3.24 8.37 8.32

Table 2
Evaluation results of the proposed approach on the stereo data set [50] using the evaluation
measures of [38] as of August 28, 2006. The numbers represent the percentage of bad pixels
(i.e., pixel whose absolute disparity error is greater than “E.T.”). “E.T.” stands for Error
Threshold, which is the acceptable disparity error. “A.R.” indicates the Average Ranking
of our algorithm against 36 other algorithms listed in [50]. The errors reported in column
“nocc” are the errors only evaluated in the non-occluded areas in the image; the errors
reported in column “all” are the errors evaluated in the whole image excluding the border
regions; and the errors reported in “disc” are the errors evaluated in the regions near depth
discontinuities (including both neighborhoods of depth discontinuities and half-occluded
regions).

Algorithm 1 Unified Algorithm for Computing Optical Flow and Disparity
1: construct image pyramids of L levels using the images I1 and I2.
2: initialize Λp and Λ0 used in Eqs. 4 and 6.
3: for l = 0 to L − 1 of the pyramids built do
4: if l == 0 then
5: compute v̂l, Λl

v [Eqs.4 and 5],
6: else
7: compute v̂l, Λl

v [Eq.8].
8: end if
9: segment image at current level of the pyramid built from I1, e.g., via mean

shift [9].
10: for each region from the segmentation do
11: fit a parametric model to the v̂l of the current region according to the

process described in [Section 3.1.2], the simplest translation model is al-
ways used first.

12: compute v̂′, Λ′
v [Eq. 10] for pixels in that region.

13: end for
14: set v̂l = v̂′ and Λl

v = Λ′
v.

15: end for

ity. However, one could argue that we should just use the most accurate algorithms
available to solve optical flow and disparity, and then combine them together to
solve for 3D scene flow. The key point here is that the inaccuracies in estimating
optical flow fields and disparities are inevitable. It is often more desirable to explic-
itly model the inaccuracies of optical flow and disparity based image properties.
Once we gain estimates of both the distributions of optical flow and disparity, we
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left image disparities bad pixels signed disparity error

(absolute disparity error > 1.0)

Fig. 4. Results on all 4 data sets [50]. The first column shows the left image of the in-
put stereo pair. The output disparity maps are displayed in the second column. The error
threshold is 1.0, hence pixels have absolute disparity error > 1.0 pixels are labeled as bad
pixels in the third column. The signed disparity error maps are displayed in the last column.

can use and propagate this uncertainty information in the computation of the 3D
scene flow. The end result of this principled way of modeling and propagating 2D
uncertainty information is that we obtain better estimates of 3D scene flow together
with the propagated error covariance information of the 3D estimates.

3.3 Computing 3D scene flow

Given the unified formulation for optical flow and disparity, we now formulate the
computation of 3D scene flow. We will assume that the cameras are fully-calibrated
and do not change in the experiments. Following [51], scene flow is defined as the
3D motion field of the points in the world, just as optical flow is the 2D motion
field of the points in an image. Optical flow is simply the projection of the scene
flow onto the image plane of a camera.
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Given a 3D point X = (X,Y, Z), the 2D image of this point in view c is denoted
as xc = (xc, yc). The 2D components of xc are

xc =
[Pc]1(X,Y, Z, 1)T

[Pc]3(X,Y, Z, 1)T
, yc =

[Pc]2(X,Y, Z, 1)T

[Pc]3(X,Y, Z, 1)T
, (11)

where [Pc]j is the jth row of the projection matrix Pc. If the camera is not moving,
then the 2D motion v = dxc

dt
is uniquely determined by the following:

dxc

dt
=

∂xc

∂X

dX

dt
. (12)

To solve for the scene flow V = dX
dt

, two equations are needed. Hence at least two
cameras are needed. The setup of the system of equations is simply

BV = U, (13)

where

B =




∂xc1

∂X

∂xc1

∂Y

∂xc1

∂Z

∂yc1

∂X

∂yc1

∂Y

∂yc1

∂Z

· · ·
· · ·

∂xcN

∂X

∂xcN

∂Y

∂xcN

∂Z

∂ycN

∂X

∂ycN

∂Y

∂ycN

∂Z




, U =




∂xc1

∂t

∂yc1

∂t

·
·

∂xcN

∂t

∂ycN

∂t




. (14)

A singular value decomposition of B gives the solution that minimizes the sum of
least squares of the error obtained by re-projecting the scene flow onto each of the
optical flows.

3.4 Integrated Approach

As discussed in Section 2, it is known that the 2D image correspondence problem
(across different views or across different time frames) is ill-posed. Hence it is
difficult to estimate scene flow reliably from optical flow and disparity. One way to
get around this is to use many cameras, as reported in [51], where 51 cameras were
used to solve Eq. 13 reliably.
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Rather than aiming to improve the accuracy by using more cameras, we propose to
incorporate the covariances derived from the computation of optical flow and dis-
parity. By taking the covariances from disparity and optical flow into account, the
linear system of Eq. 13 tends to produce reasonable scene flow even when given
only a small number of cameras. Furthermore, the estimated scene flow with co-
variances can be used for applications like probabilistic 3D tracking and 3D motion
and structure analysis.

For a stereo pair, the 3D coordinate X is related to the disparity d and corresponding
image coordinates xL and xR where L indicates left view and R indicates right view.
Let T denote the baseline and f denote the focal length (both cameras are assumed
to have the same focal length). The following equation defines the relationship
between the 3D coordinates, 2D image coordinates in the left and right cameras,
and the pixel disparity between left and right cameras.

X =
T (xL + xR)

2d
, Y =

T (yL + yR)

2d
, Z =

fT

d
. (15)

Hence we solve Eq. 14 for scene flow, V by:

V̂ = arg min
V

(BV − U)TW−1(BV − U). (16)

In the binocular setup, W is derived from the 2D covariances from the disparity
d where Λd = diag(σ2

d, σ
2
d), and the 2D flow field v where Λv = diag(σ2

vx
, σ2

vy
).

Assuming independence of the estimates of optical flow and disparity, then

W = ΛdΛv. (17)

By covariance propagation, the error covariance of scene flow V is:

ΛV = (BTW−1B)−1 = B−1WB−T . (18)

Algorithm 2 describes the single integrated method for computing optical flow,
disparity and 3D scene flow. To compute the scene flow for two consecutive frames
in the stereo video streams, we use I(L) to denote the left video stream and I(R)
to denote the right video stream. First we build image pyramids of height L for
I(t, L), I(t + 1, L), I(t, R) and I(t + 1, R). Pyramid images are indexed by l,
where l = 0 is the index for image at the lowest resolution level and l = L − 1
is the index for image at the highest resolution level. Hence I l(t, L) refers to the
pyramid image at level l and the image that is used to construct the pyramid is
captured by left camera at time t. The optical flow fields computed at each level of
the pyramid for the binocular views are denoted as vl(L) and vl(R). Disparity is
denoted as dl.
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Algorithm 2 Algorithm for computing 3D scene flow
1: construct image pyramids of L levels using the images I(t, L), I(t +

1, L), I(t, R) and I(t + 1, R).
2: initialize Λp and Λ0 used in Eqs. 3 and 5.
3: for l = 0 to L − 1 do
4: if l == 0 then
5: computeΛl

v(L),
ˆv(L)

l
, Λl

v(R),
ˆv(R)

l
, Λl

d and d̂l using Eqs.4 and 5,
6: else
7: compute Λl

v(L),
ˆv(L)

l
, Λl

v(R),
ˆv(R)

l
, Λl

d and d̂l using Eq.8,
8: end if
9: segment I l(t, L) and I l(t, R) via mean shift[9],

10: for each region of I l(t, L) from the segmentation do
11: fit a parametric model to the flow computed between I l(t, L) and

I l(t+1, L) and disparity of I l(t, L) and I l(t, R) of the pixels in the region
[Section 4.1.2],

12: compute v̂′(L), Λ′
v(L), d̂′ and Λ′

d [Eq. 10] for every pixel in that region,
13: end for
14: for each region of I l(t, R) from the segmentation do
15: fit a parametric model to the flow computed between I l(t, R) and I l(t+

1, R) of the pixels in the region [Section 4.1.2],
16: compute v̂′(R), Λ′

v(R)′, d̂′ and Λ′
d [Eq. 10] for pixels in that region,

17: end for
18: set v̂l(L) = v̂′(L), v̂l(R) = v̂′(R). Λl

v(L) = Λv′(L), Λl
v(R) = Λv′(R), d̂l = d̂′

and Λl
d = Λ′

d,
19: if l == 0 then
20: solve V̂

l [Eq. 16],
21: else
22: solve V̂

l [Eq. 16], using V̂
l−1 as the initial estimate,

23: end if
24: end for

4 Experiments

Two sets of experiments are conducted to demonstrate the effectiveness of the
weighted least squares method and the performance of the algorithm.

4.1 Synthetic 3D Data

To show the effectiveness of the weighted least squares method, 3600 3D points on
a planar surface with known 3D scene flow, 2D optical flow and disparity are gener-
ated. The motion of the points on the surface follow a deforming Gaussian surface.
Hence, each point moves in slightly different direction with different magnitude,
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which corresponds to a non-rigid motion. Gaussian noise with different variances
is added to the 2D optical flow and disparity. The magnitudes of the noise vari-
ances range from 2% to 10% of the average displacements (i.e., 2D optical flow
and disparity). Three methods are tested with and without propagating the noise es-
timated while computing 2D optical flow and disparity. Accuracy of the computed
3D scene flow is measured using the average angular error and average magnitude
between computed 3D scene flow and known 3D motion. The mean and standard
deviation of the angular and magnitude error of the estimated 3D scene flow are
reported based on the average of 10 runs of the experiments at each noise level.

Method 1: Eq. 13 without incorporating covariance [51].

Method 2: Eq. 16 where only the covariance of 2D optical flow is used.

Method 3: Eq. 16 where both the covariance of 2D optical flow and the variance
disparity are used.

Fig. 5 shows the mean and standard deviation of angular and magnitude error and
Fig. 6 shows the results of sample frames based on the recovered 3D scene flow.
The insight we gain from these experimental results is that taking noise into con-
sideration yields more reliable 3D scene flow estimates. When estimating 3D scene
flow with real image data, the computations of optical flow and disparity are always
inaccurate due to the camera noise and the image properties, e.g., image regions
with no texture or repetitive texture, image regions with low contrast and motion
blur when we capture image sequences, etc. Hence, even when equipped with the
most accurate optical flow and disparity algorithms, the 2D image quantities still
cannot always be evaluated accurately. However, by carefully choosing the right
algorithms to account for these errors and taking them into consideration when es-
timating 3D scene flow, we can improve the accuracy of estimates. The importance
and effectiveness of Algorithm 2 are demonstrated with real video sequences in the
next experiment.

4.2 Real Videos

To evaluate the algorithm in practical applications, experiments have been con-
ducted with videos of real scene sequences. In all the experiments conducted,
σ1 = 0.008 (σ1 is related to the error from the failure of the assumption that the
displacements are constant in a small region), σ2 = 0.0 (σ2 is related to error when
computing temporal derivatives) and σ0 = 0.10 (σ0 is diagonal entry in the covari-
ance matrix during information propagation) and initial σp = 0.5 (σp represents the
prior distribution information of the displacements). Five-level image pyramids are
used in all the test cases. These parameters are determined during experiments. The
results from three different video sequences are presented in Figs. 7 and 8.
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Fig. 5. Angular error (first row) and magnitude error (second row) of synthetic data with
added Gaussian noise.

The sequences were captured with Videre MEGA-D system: a binocular stereo
camera connected with Matrox capture card through fire wire cable. The frame
rate of the stereo sequence is around 30 frames/sec with resolution of 320 × 240.
The scene flow algorithm is implemented Matlab and C++. Experiments were con-
ducted on an AMD Athlon MP 2100+ machine. Dense scene flow is computed
for each frame in about two minutes per frame. The acquired sequences are rec-
tified and the calibration information is given. The binocular video sequences are
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(b)

(c)

(d)

Fig. 6. Results of sample frames from the synthetic data (noise level = 5%). (a) surface
deformation estimated by the groundtruth 3D scene flow; (b) surface deformation estimated
by Method 1 [51]; (c) surface deformation estimated by Method 2; (d) surface deformation
estimated by Method 3.

acquired in an uncontrolled illuminated environment as seen in Fig. 7; hence the
estimates of optical flow and disparity tend to be noisy.

In Fig. 7, the observable motions in the first sequence are the backward movement
of right hand and the forward movement of left hand. The second row of Fig. 8
shows the 2D projection of the estimated 3D flows in the left and right views, the Z
velocities and the variances. From the result, we can see that the 3D movements of
the left and right hands have been described reliably. In the second sequence, both
hands are moving forward. The projections and Z motion of the 3D flow demon-
strate similar reliability.

To show the ability to recover non-rigid motion, we captured a sequence with a
deforming sponge (by pushing the top of the sponge) with painted texture patterns.
Only the upper part of sponge has obvious Z motion (towards the camera) and
the rest of the sponge only moves slightly towards the table. This is shown clearly
in projected flows and the recovered Z motion. The variances of the Z velocities
are shown in the last column of images. The variances give information about the
reliability of the estimates. Darker areas indicate lower variance and brighter areas
represent higher variance. From Fig. 7, one can see that the variance is tied to
the 2D image properties, e.g., local image contrast and texture information. This
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observation again verifies the promise of our proposed method. One thing to note is
that there is a bit of shadow movement being captured by the algorithm. Exploiting
strong geometric cues (e.g., the desk is flat) would help remove this artifact, but this
is not the focus of the proposed algorithm.

In the sequences we captured, the largest displacement between the stereo pairs
is around 100 pixels and there are occluded areas present in all the captured se-
quences. However, we still can produce reasonable estimates in those areas. This is
due to the region merging step where the information fill-in takes place.

Comparisons with the approach of [51] are shown in Fig. 8. The inputs to Eq. 13 are
obtained using Algorithm 1, but the covariances are not used. Without ground truth
data, it is difficult to quantitatively evaluate the results. Here we use the error image
of the warped image of I(t) and the target image I(t+1). If the projected flow fields
are accurate, we should have smaller warped image error. In all three test sequences,
the proposed method produced much smaller warped image errors compared to
those of [51]. Qualitatively, our proposed method produced much cleaner projected
flow and Z-motion in all three test sequences. Similar results have been shown in
[60] with three cameras while we only used a binocular stereo rig.

5 Discussion and Conclusions

A multi-scale integrated algorithm for 3D scene flow computation was proposed. A
region-based probabilistic algorithm was introduced to compute the distributions of
optical flow and disparity. Covariances and variances from the probabilistic multi-
scale framework for optical flow and disparity computation are combined to esti-
mate 3D scene flow. Occlusions due to large displacement are handled through a
region merging process that allows occluded regions to take on valid estimates from
adjacent regions. Experiments with synthetic and real data demonstrate much better
performance with just two cameras compared to [51]. This superior performance is
obtained via taking care of the uncertainty from 2D computation and using region
information to regularize the 2D estimates. At the same time, the proposed method
computes covariances of the estimated 3D scene flow. The covariances are prop-
agated from the 2D image data and hence provide a measure of how reliable the
estimated scene flow is. We expect that the covariances should provide a good ini-
tialization for related 3D tracking algorithms. Our proposed approach is general and
can be used in a multi-camera setup (E.g. [51, 59, 60]) and should enable improved
estimation of 3D scene flow. One way to extend our approach in a multi-camera
setup is to choose a reference camera along the lines of [59, 60].

We are currently investigating how to incorporate the proposed algorithm in track-
ing applications such as vision-based human-computer interfaces. Other interesting
applications include analyzing and annotating events in stereo video through anal-
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ysis of 3D scene flow. Future work includes extending our formulation to exploit
available prior information, e.g., the shape information of the object, to eliminate
the inaccuracy like what is shown in Fig. 7, where the shadow affects the estimates.
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Fig. 7. Experimental results with three real sequences. The motions presented in the first
sequence are one fist moving forward and the other backward. The second sequence shows
the motion of both hands moving forward. A deforming sponge (by pushing the top) is
shown in the third sequence. In the rows that demonstrate the estimation results, the first
two columns are the projections of estimated 3D scene flow in left and right view, the third
column is the Z velocity intensity image, the darker area represents the hand moving away
from the camera, the brighter area indicates the hand moving towards the camera, the last
column shows the variances of the Z velocity where the darker areas represent the places
where the estimates for Z velocity are more reliable and the brighter areas represent the
places where the Z velocity estimates are less reliable.
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Fig. 8. Comparison with the estimation results using Eq. 13 with the three video sequences.
The first, third and fifth rows show the results of using Algorithm 2 while the second, fourth
and sixth rows show the results using Eq. 13, which is equivalent to [51].
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